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Abstract

This paper investigates the magnetohydrodynamic (MHD) flow and heat transfer characteristics in the presence of a uniform applied
magnetic field. The boundary layer flow of a third-order fluid is induced due to linear stretching of a non-conducting sheet. The heat
transfer analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST-case) and (ii) pre-
scribed surface heat flux (PHF-case). The governing non-linear differential equations are solved analytically using homotopy analysis
method (HAM). The series solutions are developed and the convergence of these solutions is discussed. Velocity and temperature dis-
tributions are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular
form. Emphasis has been given to the variations of the emerging parameters such as third-order parameter, magnetic parameter, Prandtl
number and the Eckert number. It is noted that the skin friction coefficient decreases as the magnetic parameter or the third grade param-

eter increases.
© 2006 Published by Elsevier Ltd.
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1. Introduction

Boundary layer flow over a stretching surface is often
encountered in many engineering disciplines. The aerody-
namic extrusion of plastic sheets, the cooling of an infinite
metallic plate in a cooling bath, the boundary layer along a
liquid film in condensation process and a polymer sheet or
filament extruded continuously from a dye are few exam-
ples of practical applications of a continuous flat surface.
Many metallurgical processes involve the cooling of contin-
uous strips or filaments by drawing them through a quies-
cent fluid. By drawing such strips in an -electrically
conducting fluid, the cooling rate can be controlled and
product of desired characteristics can be obtained. Further,
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flow and heat transfer phenomena over stretching surface
has promising applications in a number of technological
processes including production of polymer films or thin
sheets. More specifically, heat transfer analysis plays a vital
role during the handling and processing of non-Newtonian
fluids. Such analysis in boundary layer flows of non-New-
tonian fluids occurs in the design of thrust bearing and
radial diffusers, transpiration cooling, drag reduction and
thermal recovery of oil. The flows of non-Newtonian fluids
[1-8] are very important due to their industrial and techno-
logical applications.

Extensive work in the literature has been performed for
the boundary layer flow and heat transfer of a viscous and
second grade fluids over a stretching surface. Most
recently, Liu [9] discussed the flow of a second grade fluid
with heat transfer. Although extensive existing investiga-
tions of second-order fluid model exhibit normal stresses
but for steady flow it does not describe the property of
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shear thinning or thickening. Therefore some experiments
may be well described by third or fourth-order fluids
[10,11]. The third-order approximation of a simple fluid
exhibits shear dependent viscosity; for a simple-shearing
motion (v=(yy,0,0)), where y is the rate of strain. The
relation between the shearing stress and the rate of strain
is given by S;» = u(1 — T2y?)y, where Ty is the shear-relax-
ation time (its reciprocal is the characteristic rate of strain
at which the apparent shear viscosity noticeable decreases),
and p is the lower limiting viscosity. Experiments by Bruce
[12] and Joseph [13] have shown that there are materials
that exhibit: (1) strong normal stresses but are weakly
shear-thinning (class 1); (2) roughly equal normal and
shearing effects (class 2); and (3) weak normal stresses
but are strongly shear-thinning (class 3). The model
in the present study is of class 3 fluids (or third order).
To the best of our knowledge, no attention has been given
to the MHD boundary layer flow and heat transfer analysis
of a third-order fluid over a linear stretching sheet. Even,
the hydrodynamic boundary layer flow of a third-order
fluid caused by a stretching surface without heat transfer
is not discussed so far. Thus, the primary objective of this
work is to present the analytical solution of such attempt.
This problem is not only important because of its techno-
logical significance but also in view of the interesting math-
ematical features presented by the equations governing the
flow.

The paper is organized as follows. We start our formu-
lation in Section 2 by defining the continuity, momentum,
constitutive equations and boundary conditions in the
Cartesian coordinates. In the Section 2.1, we find the ana-
Iytic solution for the velocity using HAM [14-31]. The
expression for the skin friction coefficient is also given in
Section 2.2. The energy equation for the thermodynamic
third-order fluid is presented in Section 3. Sections 3.1
and 3.2 respectively deal with the boundary conditions
and HAM solutions of the temperature distribution for
the prescribed surface temperature case and the prescribed
heat flux case. In Section 4, we show the convergence of the
solution. In Section 5 the results relevant to the graphs are
presented. Section 6 synthesis the concluding remarks.

2. Flow analysis

In this section, we consider the MHD flow of a third-
order fluid over a stretching sheet with the plane y =0.
By applying two equal and opposite forces along the x-
axis, the sheet is being stretched with a speed proportional
to the distance from the fixed origin x = 0. The fluid occu-
pies the half space y > 0 and the motion of the otherwise
quiescent fluid is induced due to the non-conducting
stretching sheet. A magnetic field B = (0, By,0) is applied
and the induced magnetic field is neglected by taking the
magnetic Reynolds number very small. Besides, no electric
field is applied and the effect of polarization of the ionized
fluid is negligible and thus E = 0. It is also well known that

the third grade fluid has Cauchy stress tensor T of the

following form:

T = —pl + uA; + oAy + AT + 1Az + B,(A2A] + AjA,)
—+ ﬁf‘(trA%)Alv (1)

where the kinematical tensors A; and A, are defined by

A =VV+ (VW)

dA
A, = d_tl + A (VV) + (VV)'A,,

2)

in which V is the fluid velocity and d/dz is the material
derivative.

For steady plane flow the two dimensional equations are
of the following form:
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Under the usual boundary layer arguments that u, g;, gxé‘, 2’:
be O(1) and y, v be O(J) yields the following equations

which govern the MHD boundary layer flow [32]
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where « and v are the velocities in the x- and y-direction,
respectively, p is the fluid density, v (=p/p), is the kinematic
viscosity, ¢ is the electrical conductivity, oy, o, 51, > and
B3 are material constants. Note that v and «;/p (i=1,2)
being O(6%) and fi/p (i=1,2,3) being O(5*) and terms of
O(0) are neglected (where 0 being the thickness of the
boundary layer).
The relevant boundary conditions are

v=0 at y=0,

u—0 as

u = Bx,

y — oo.

Let us introduce the following dimensionless quantities

u = Bxf"(x,n), U:_\/_<( )+x2_];)

B B (B, + Bs) )
04
62:_27 (f)_ : 37
It It
¢:Bix2 27673(21
1 v; pB7

where the prime signifies differentiation with respect to 7.
The mass conservation equation is automatically satisfied,
where as Eq. (6) transforms into the following ordinary dif-
ferential equation:

[f’" g e L
a2 st o L 4 a2
+ 6¢¢1f’"f"2} =0. )
The boundary conditions (7) become
=0, f'=1 atn=0,

10
f'—0 asy— oo. (10)

Egs. (9) and (10) represent a non-linear differential prob-
lem, the analytic solution of which is not so easy. In the

next section, we will find the HAM solution of the govern-
ing non-linear problem.

2.1. Homotopy analytic solution

In order to solve Egs. (9) and (10) by HAM we choose
the initial approximation

Son) =1 —e™ (11)
and the auxiliary linear operator

L) ="~ (12)
which has the property
g(fl[C1+C2eyl+C3Cﬂ1]:0, (13)

where Cy, C, and Cs are constants.
The zero-order deformation problem is
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(1 =p)L1[f (.0, p) = fo(n)]

f(x,0,p) =0, f'(x,0,p)=1,
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where
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is the non-linear differential operator, p €[0,1] is the
embedding parameter and 7, is auxiliary nonzero parame-
ter. For p =0 and p = 1, we respectively have

fGen,0) = foln),  flx,n, 1) = £ (x,n). (17)
As p increases from 0 to 1, f(x, 5, p) varies from the initial
guess fo(n) to the solution f{x,#). By Taylor’s theorem and
Eq. (17), we have
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Clearly, the convergence of the series (18) depends on the
auxiliary parameter /i;. Assume that 7, is selected such that
the series (18) is convergent at p = 1, then due to Eq. (17)
we have
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Differentiating m-times the zeroth-order deformation
Eq. (14) with respect to p and then dividing by m! and
finally setting p = 0 we get the following mth-order defor-
mation problem
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We use the symbolic computation software MATHEMAT-
ICA to solve the linear equations (21) and (22) up to first
few order of approximation and found that the solution
of the problem can be expressed as
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Now substituting the expression given in Eq. (25) into
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m.n

form=>=1,0<n<2m+land 0<g<2m+1—m:
2m+1
/m72m+1am 1,0 Z 'Pm llul )1 Z (I’l - 1)111311/‘20
q=0 n=2
2m+1—n
+ Z (= Dply — 1) |5 (26)
aﬁ,,o = Xm%2m+lfkafn—l,0’ I <k<2m+1, (27)
2m
S XmXZma(r)nfl,l + Z lPZ;,l:u(IIJ
q=0
2m+1 2m+1—n
+ Z {nlpgnuuno + Z 'Pmn nlun() lug,l)}ﬂ (28)
n=2
2m
= onXom iy it Z okl 1<k<2m+1,
q=k—1
(29)
2m+1—n
mn = XmX2m+1-n— kam ln+ Z qjmniunlﬂ
q=k
2<n<2m+1, 0<k<2m+1—n, (30)
where
q+1—k q|
'u‘{,k: k7'2"+1 420, 1<k<29+1, (31)
q—k gq—k—r |
q:
,UZ = A ;
X M I s 1
0<k<2+1-n¢20n>2 (32)



1728 M. Sajid et al. | International Journal of Heat and Mass Transfer 50 (2007) 1723-1736

and the related coefficient ¥

m,n
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where the related coefficients 4" d* and e, are
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For the detailed procedure of deriving the above rela-
tions the reader is referred to [16]. With the above recur-

rence formulae, we can calculate all coefficients a;, , using
only the first two
age =1, ap, =-1, (44)

given by the initial guess approximations for the function
fln) in Eq. (11). The corresponding Mth-order approxima-
tion of Egs. (9) and (10) is then given by
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We obtain in fact the following explicit, totally analytic
solution of the present boundary layer flow
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2.2. Skin friction

The shear stress 7,, on the surface of the stretching sheet
is

Tw =

6u+ Ou 6u+ u o%u
“ay N\ Jy U@yz ”axay
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The local skin friction coefficient or frictional drag coeffi-
cient is

(47)
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which in terms of dimensionless quantities is

" ! ! 1 a
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where Re, = Bx?/v is the local Reynolds number based on
the length scale x.

3. Heat transfer analysis

The energy equation, corresponding to the boundary
layer flow of a thermodynamic third grade fluid is

al+val _k62l+ aﬁ 2+O€ @ﬂ+v%@

Per\ " ox dy) o2 K Oy 1u6y6xay 0y 0y?
ou\*

25+ 89(3) (50)

where T is temperature, ¢, is the specific heat and k is the
thermal conductivity. The boundary conditions depend
on the heating process:
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3.1. The prescribed surface temperature ( PST case)

Here
X 2
r=T7T,=T Al- =
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T—T, as y— oo,
where A4 is a constant. Defining
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where Pr = pc,/k and E = B*F’/c,A are the Prandtl number
and Eckert number, respectively.

3.1.1. HAM solution
Here we take the initial guess approximation of 0(#) as

0o(n) =" (55)
and the corresponding auxiliary linear operator

L) =1"—f (56)
satisfying

PL5[Cye" 4+ Cse™") = 0, (57)

where C4 and Cs are arbitrary constants.
The zeroth-order problem is of the following form

(1= p)L2[00x,n,p) — o(n)] = pha N 2[0(x,n,p), f (x,1,p)],
(58)
0(x,0,p) =0, 0(x,00,p) =0, (59)

where the non-linear differential operator .47, is given by

'/1/2[9()57 ’7713),4/}(% 777[7)}

azé(xﬂﬁp) 7 aé(x,n,p) @f(x,n,p)

a.;((xﬂ/hp) ab(x7n7p) w7 a{)(x77]7p)
Ox an xf (X,T],p) ox

o/ (n,p) (aﬂx, n,p) & (x,n,p)

+ Pr. 0(x,n,p)

+x

PrE
RO on o

34 o
7f(x7n7p)af(x7n7p) af(x7n7p))

anS *Xf (x7 nvp)f (X,f’],p) ax

+PE [(%) +2¢¢, (M) } 7 (60)

where 7, is auxiliary nonzero parameter. For p =0 and

p =1, we respectively have

é(%’?vo) = 00(’7)7 é(x; , 1) = g(xa 77) (61)

Obviously as p increases from 0 to 1, @(x, 1, p) varies from
0o(n) to O(x,n). By Taylor’s theorem and Eq. (60), we have

00

0(x,n,p) = 0o(n) + Y _ On(x, m)p", (62)
m=1
where
1 "0 X, N, p
Onlsr) = 5 ) (63)

p=0

and convergence of series (62) depends on /%,. Assume that
7, 1s selected such that the series (62) is convergent at p =1,
then due to Eq. (61) we can write

o0

0(x,n) = Op(n) + Y On(x, ). (64)
m=1
The mth-order deformation problem is
"?2[9m(x7 17) - Xmgmfl (x7 77)] = h2‘%;2n(x’ ’7)’ (65)

0 (x,0) = 0,,(x,00) =0, (66)

where

m—1

Of i
%Z(X n)_()m 1+HZ f;'l =

=2/ 14 Ox o O;f

Sr-1-40

! ao 1 1 ! d 1 1
=X o aixk + E{fmlkfk +e <fmlk Efk—lfl
1=0

" e fmflfk - e

_fm 1 I\ka - ox kafl.f/
1=0

+2¢¢1f,;’1k2ﬂ’12ﬁ”,-f,,-”H- (7

1=0 /=0

The solution of the above problem can be expressed as

2m+2 2m+2-n

So> Al m=0. (68)

n=0 q=0

Qm(xa ’7) =

Now substituting the expression given in Eq. (68) into Eq.
(65) yields the following recurrence formulae for the coeffi-

cients A7 of 0,,(x,n):
form=>=1,0<n<2m+2and 0<g<2m+2—m:
2m+2 2m+2—n
A&J = XmXZmAi—l,l - Z Z @ZznvnO’ (69)
n=2 q=0
2m+1
Aﬁzl XmXZm m— ll+ Z @ml 1,k k<2m+17
q=k—1
(70)
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2m+4-2—n
Afn,n = Xm%Zerlfnkafn—l,n + Z @:In,nv;ik’
q=k
2<n<2m+2, 0<k<2m+2—n, (71)
q!2q+2—k
vltk: k! ’ O<k<2q+27 920, (72)
+1-k
vl = ' h
e K= 1 (n e )T
0<k<2¢4+2—n,¢=20,n=2, (73)

@fn,n = hl |:X2m+2—n—q (Cm 1.n +Pf’E}q )

+ Aom43—n—q {Pr(agn,n - Zﬁfn,n)

+PrEe (113, — 1, ) b+ 2PrEg, 23, | (74)

q q q q
The coefficients of ,, B, ki, and X! = where m > 1,

0<n<2m+2,0<qg<2m+2—n are defined by

—1 min{n,2k+2}

m
q —
am,n - § :

k=0 j=max{0,n—2m+2k-+1} i=max{0,g—2m-+2k+14+n—;}

min{q,2k+2—j}
Bl —i

k.j mlkn/’

(75)

m—1 min{n,2k+2}

ﬁZLn = Z

k=0 j=max{0,n—2m+2k+1} i=max{0,g—2m+2k+1+n—;}

min{q,2k+2—}

Al bql

kj~m—1—kn—j’

(76)
m—1  k min{n,2k+2}
L —
Kmn - § :
k=0 =0 p=max{0,n—2m+2k+1}
min{gq,2k+2—p} min{p,2/+1}
X
t=max{0,g—2m+2k+1+n—p} j=max{0p—2k+2/—1}
min{z,2/+1—}
i i q—t
x d Ck lp jam 1-k,n—p> (77)
i=max{0,/—2k+21—1+p—j}
m—1  k ! min{n,2k+3}
L’ —
mn 2 : § :
k=0 [=0 j=0 s=max{0,n—2m+2k+1}
min{g,2k+3—s} min{s,2/+2}
X
w=max{0,g—2m-+2k+14+n—s} i=max{0,s—2k+2/—1}
min{w,2/4+2—i} min{i,2j+1}
X
r=max{0,w—2k+2[/—1+s—i} p=max{0,i-2/+2j—1}
min{r,2j+1—p}
—r q w
X C]pcl ]z pck 1s—iCm—1- kn—s? (78)

t=max{0,r—2/+2j—14+i—p}

where the related coefficients B}, , and Cfn,n are given by
m no (k + 1)Ak+l Afnn, (79)
= (k+1)B,5 —nB, . (80)

Using the above recurrence formulae, we can calculate
all coefficients 4, , using only the first two

Ag,o =0, Agl =1, (81)

given by the initial guess approximations for the function
0(n) in Eq. (55). The corresponding Mth-order approxima-
tion of Egs. (53) and (54) is then given by

M 2M+2 2M+1 2m+2—n
YSUCTIED S Sib SR NS
m=0 n=1

m=n—1 k=0
We obtain in fact the following explicit, totally analytic
solution of the heat transfer in the PST case

2M+2 2M+1 2m42—n
l1m [Z e"’”( Z Z Aﬁmnk>}
m=n—1 k=0
(83)

and the dimensionless temperature gradient at the wall is
given through

0(x,n) = ZG,,, X, 1)

m=0

00 2M+2 2M+1
0(x,0) =3 0,(x.0) = lim lZ > (4h,—4 )]
m=0 =1 m=n-1

(84)

The dimensionless heat transfer rate at the wall, character-
ized by the Nusselt number Nu, is given by

_kéT
»ly=0 12/
Nu=-—2""_x = _Rel?p
u K(Tn _Too)x e/°0'(x,0) (85)
and the local heat flux can be expressed as
or x\2 |B
= —k—| = —kA(>) /20 (x,0).
9., = k3, . k (1) \[v 0 (x,0) (86)

The expressions in Egs. (83) and (85) are evaluated for the
different values of the emerging parameters and are dis-
cussed. We will now discuss the case of the prescribed heat
flux in the next subsection.

3.2. The prescribed surface heat flux (PHF case)

Here the boundary conditions are of the following form:

oT X\ 2
_kaqu*D(7> at yfov (87)
T—T, as y— oc. (88)
Taking
D /x\2 |v
T—To==(2)/=
o k(l) \/;g(x,n), (89)

we obtain the differential equation (53) with the following
boundary conditions:
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"(x,n) = —1, at 5 =0,
g'(x,n) n (%)
glx,n) =0 as n— oo.
In this case the Eckert number is defined as
B*I> B
g-"B! \/: (91)
Dc, v

3.2.1. HAM solution
We note that solution here is the same as in the previous
subsection except that the recurrence relation in Eq. (69)
now is
2m+1

0o _ 0 q 4
Am,l = AmXomAm 11 — E O, Vi
q=0

2m+2

The corresponding Mth-order approximation of Egs.
(53) and (90) is

M 2M+2 2M+1 2m+2—n
P ACAIED e’“’( > Ai,m")
n=1

2m+2—n

”@214;1"2,0 + Z @31,,, (”Vz,o - VZJ)] . (92)
q=1

(93)

m=0 m=n—1 k=0

1731

and totally analytic solution of the heat transfer in the PHF
case is

glx,n) = igm(x, n)

) 2M+2 2M+1 2m+2—n .
(550

m=n—1 k=0

(94)
The wall temperature T, is obtained from Eq. (89) as

T—-Ty= % (37‘)2\/gg(x, 0).

4. The convergence of the solution

(95)

The explicit, analytic expressions (46), (83) and (94) con-
tain two auxiliary parameters 7, and 7,. As pointed out by
Liao [14], the convergence region and rate of approxima-
tions given by the homotopy analysis method are strongly
dependent upon these auxiliary parameters. In Fig. 1(a—)
the Z-curves are plotted to see the range of admissible val-
ues for the parameters 7; and 7%,. It is clear from Fig. 1(a—c)
that the range for the admissible values for 7; and #, is
—1 < 7%y, i, <0. And the series given by Eqgs. (46), (83)
and (94) converges in the whole region of #, when

a ; €,=0.1,6,=0.1,¢,=1,$=0.1, M=2 b €=0.1,6=0.1,¢,=1,¢=0.1, M=2, Pr=2, E=0.2
-12 -1.2
-14 -14
6: S
S -
= _16 3 1.6
bl >
-1.8
-1.8
2 15th-order app. -2 15th—-order app.
-22
-05 -04 -03 -02 -0.1 0 -1.5 -1.25 -1 -075 -05 -025 O
iy T,
c €,=0.1,6,=0.1,¢0,=1,¢=0.1, M=2, Pr=2, E=0.2
22
ol 15th-order app.
~ 18
=
L
% 16
14}
1.2}
-0.8 -0.6 -04 -0.2 0

hy

Fig. 1. h-Curves are plotted for the functions f, 0 and g: (a) flow analysis, (b) PST case and (c) PHF case.
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hy = -04, h, = —0.75 for PST case and /i, = —0.4 for PHF
case. It is also observed that the series (46) of f(x,#) con-
verges faster than that of the 6(x,n) and g(x,n). This is
due to the fact that the non-linearity in the later case is
stronger than the former.

a €=0.5,6,=0.5, ¢,=2, M=0.5
1 — $=0.00
------ 6=0.25
08 - $=0.50
- $=1.00
06 N\ ¢
S
04
0.2

5. Results and discussion

In this section, attention has been focused to the varia-
tions of ¢, ¢, M, Pr, E, ¢; and €,. For this purpose Figs.
2-7 have been displayed. In order to see the variation of

b €=0.5,6,=0.5,¢,=2, M=0.5
1.2
1
0.8
06
— ¢=0.00
04 e $=0.25
0.2 -t ¢=050
---¢=1.00
0] 1 2 3 4 5

n

Fig. 2. Variation of the dimensionless velocity fields f/” and f with increasing third-order parameter ¢: (a) f'() and (b) fin).

a €1=O5,52:0,5,¢11=2¢=Q1

— M=00

f'(n)

b €=05¢=05¢,=2¢=01

n

Fig. 3. Variation of the dimensionless velocity fields /” and f with increasing MHD parameter M: (a) f'() and (b) f(n).

a €,=0.5,e,= 0.5, M=0.5, ¢=0.1

f'ap

€,=0.5,e,= 0.5, M=0.5, =0.
b 1= 0.5,¢,= 0.5, M=0.5, 9=0.1

n

Fig. 4. Variation of the dimensionless velocity fields f” and f with increasing parameter ¢;: (a) f'(n) and (b) fin).
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a €,=0.5,6,=0.5,¢,=2, M=0.5,E=0.5, Pr=2.0 b €,=0.5,6,=0.5,¢,=2, M=0.5,E=0.5, Pr=2.0
—$=00 —$=-00
é 05 ¢

e p= 0.5 . e p= 0.5

—_——— ¢: 1.0 04 \‘\‘ - - ¢: 1‘0
= 203

S (&>}
0.2
0.1
0
0 1 2 3 4 5 0 1 2 3 4 5
n n

Fig. 5. Variation of the dimensionless temperature profiles  and g with increasing third-order parameter ¢: (a) 0(y), PST case and (b) g(y7), PHF case.

third-order parameter ¢, ¢p; and magnetic parameter M on
velocity components u# and v, the respective graphs for
f(x,n) and f{x,n) have been sketched in Figs. 2-4. The
graphs for the variation of ¢, ¢, M, Pr and E on the tem-

perature are shown in Figs. 5-9. In these figures, 0(x,7) is
the temperature variation that corresponds to the PST case
and g(n) is the temperature variation for the PHF case.
Moreover, the variations of ¢ and M on the skin friction

€¢,=0.5,¢,=0.5,6,=2, ¢$=0.2,E=0.5, Pr=2.0

6(n)

a €,=0.5,¢,=0.5,6,=2, $=0.2, E=0.5, Pr=2.0 b
— M=00
-------- M=1.0
——-- M=20
0 2 3 4

— M=00
— M= 1.0
----M=20

Fig. 6. Variation of the dimensionless temperature profiles 0 and g with increasing MHD parameter M: (a) 0(n), PST case and (b) g(), PHF case.

0.8

0.6

a@m)

04

0.2

€1=0.5, ¢,=0.5,6,=2, =0.2, E=0.5, M=0.5

— Pr=0.0

---- Pr=20

1.75
1.5

1.25

()]

0.75
0.5
0.25

€,=0.5,€,=0.5,¢4,=2,¢=0.2, E=0.5, M=0.5

— Pr=00
= Pr=1.0
-=--Pr=20

Fig. 7. Variation of the dimensionless temperature profiles 6 and g with increasing Prandtl number Pr: (a) 6(5), PST case and (b) g(1), PHF case.
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a €,=0.5,¢,=0.5,6,=2, $=0.2, Pr=2.0, M=0.5

a(m)

—E=00

b

0.6}"

0.5

0.4

€,=0.5,€,=0.5,0,=2,¢=0.2, Pr=2.0, M=0.5

—E=00

Fig. 8. Variation of the dimensionless temperature profiles 0 and g with increasing Eckert number E: (a) 0(5), PST case and (b) g(n), PHF case.

a €,=0.5,¢,=0.5, E=0.5, 6=0.2, Pr=2.0, M=0.5
e G2 4
—eem b= 6
S
5
0 1 2 3 4
n

€,=0.5,¢,=0.5, E=0.5,¢=0.2, Pr=2.0, M=0.5

- ¢1 =0
e by = 4

- ¢,=6

Fig. 9. Variation of the dimensionless temperature profiles § and g with increasing parameter ¢;: (a) 6(y), PST case and (b) g(1), PHF case.

Table 1 Table 3

Values of the skin friction coefficient CyRe!/? for ¢; = 0.2, ;= 0.2 and Values of the skin friction coefficient CrRe!/? for ¢; =0.2, ¢ =0.0 and
hy=-0.3 hy=-0.3

) M=0.0 M=0.5 M=0.75 M=1.0 € M=0.0 M=0.5 M=0.75 M=1.0
0.00 —2.26495 —2.51797 —2.80760 —3.17236 0.0 —2.45711 —2.72905 —3.04098 —3.43464
0.50 —2.32154 —2.58969 —2.90186 —3.30240 0.1 —2.35718 —2.61941 —2.91989 —3.29869
0.15 —2.35527 —2.62746 —2.94653 —3.35940 0.2 —2.26495 —2.51797 —2.80760 —3.17236
0.20 —241114 —2.68147 —3.00023 —3.41655 0.3 —2.17988 —2.42417 —2.70355 —3.05507
0.25 —2.51679 —2.77597 —3.08254 —3.48638 0.4 —2.10144 —2.33748 —-2.60718 —2.94623
Table 2

Values of the skin friction coefficient C;Re!/? for ¢, =0.2, ¢ =0.0 and Table 4

i =-03 Values of the Nusselt number —Re;‘/zNu for e, =0.2, &,=0.2, ¢ =0.1,
@ M=00 M=05 M=075  M=10 M=05,7>==075 and 7y = 0.3

0.0 —1.79130 —1.98445 220682 2.48859 i £=00 £=02 E£=04 E£=06

0.1 —2.04611 —2.27220 —2.53167 —2.85931 0.5 0.92382 0.89027 0.85671 0.82316

0.2 —2.26495 —-2.51797 —2.80760 —3.17236 1.0 1.39525 1.33638 1.27752 1.21865

0.3 —2.46548 —2.74155 —3.05697 —3.45352 1.5 1.76940 1.69097 1.61254 1.53412

0.4 —2.65330 —2.95004 —3.28868 —3.71404 2.0 2.07285 1.97850 1.88414 1.78978
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coefficient have been listed in Table 1. Tables 2 and 3 have
been prepared to show the variation of ¢, ¢; and M on the
skin friction coefficient. Table 4 presents the variations of
Pr and E on the Nusselt number. From the present study,
the main findings can be summarized as follows:

e Increasing ¢, the x-component of velocity and boundary
layer thickness increases.

e The y-component of velocity increases and boundary
layer thickness decreases for large values of ¢.

e The x-component of velocity decreases and boundary
layer thickness increases when value of M is increased.

e Large values of M decrease the y-component of velocity
and the boundary layer thickness.

e An increase in the value of ¢ leads to a decrease of the
temperature. But the thermal boundary layer thickness
increases by increasing ¢.

e The behaviour of M on the temperature and the thermal
boundary layer thickness is quite opposite to that of ¢.

e The variation of Pr for the temperature and thermal
boundary layer thickness is similar to that of ¢.

e The influence of E on the temperature and thermal
boundary layer thickness is similar to that of M but is
quite opposite of Pr.

e The effect of the parameter ¢, on the velocity and tem-
perature are similar to that of the third-order parameter
¢.

e The magnitude of skin friction coefficient increases by
increasing ¢ and €; keeping M fixed.

e When ¢, increases, the magnitude of skin friction coeffi-
cient decreases by keeping M fixed.

e For fixed M, the variation of ¢, on the magnitude of skin
friction coefficient is quite opposite of ¢;.

e The variation of M on the magnitude of skin friction is
similar to that of ¢.

e The Nusselt number decreases by increasing E and fixed
Pr and the effect is opposite for increasing Pr and fixed
E.

e The HAM solutions for the second grade and Newto-
nian fluids with heat transfer can be taken as the limit-
ing cases by choosing ¢ =0 and ¢ =¢ =¢,=0,
respectively.

6. Concluding remarks

In this paper, we have considered a problem concerning
the MHD flow and heat transfer analysis of the third-order
fluid. The solution for boundary layer flow caused by a
stretching sheet is obtained. To carry out heat transfer
analysis, the energy equation has been solved for the pre-
scribed surface temperature and heat flux cases. Analytical
solutions for the velocity and temperature distributions are
obtained using an analytical technique, namely the homot-
opy analysis method [14,15]. The convergence of the results
are shown. The results are presented graphically and the
effects of the emerging parameters are seen. The skin fric-
tion coefficient and the Nusselt number are tabulated. It

is interesting to note that the velocity increases for the large
value of the third-order parameter ¢. Also, the temperature
decreases with an increase in the third-order parameter. To
the best of our knowledge, such analytic solutions have
never been reported. The obtained solutions have promis-
ing applications in engineering such as materials manufac-
tured by extrusion process, on conveyer belts etc. Such
results should be applicable for a variety of non-Newtonian
fluids such as aqueous solutions of high molecular weight,
polyethylene oxide and polyacrylamide.
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